Energy Ratio Variation-Based Structural Damage Detection Using Convolutional Neural Network

نویسندگان

چکیده

In the field of structural health monitoring (SHM), with mature development artificial intelligence, deep learning-based damage identification techniques have attracted wide attention. this paper, convolutional neural network (CNN) is used to extract feature simple supported steel beams. Firstly, transient dynamic analysis beam carried out by finite element software, and acceleration response signals under different scenarios are obtained. Then, signal decomposed wavelet packet decomposition (WPD) band energy ratio variation (ERV) index as training sample CNN. Subsequently, vibration experiment a was out, results were compared numerical simulation results. The characteristic indexes obtained making corresponding changes signal, then, experimental data input into CNN predict effect detection. show that method can successfully detect intact structure, single damage, multiple damages an accuracy 95.14% impact load, performance better than support vector machine (SVM), good robustness.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Image Manipulation Detection using Convolutional Neural Network

Using various methods, an image manipulation can be done not only by the image manipulation itself, but also by the criminals of counterfeiters for the purpose of counterfeiting. Digital forensic techniques are needed to detect the tampering and manipulation of images for such illegal purposes. In this paper, we present an image manipulation detection algorithm using deep learning technology, w...

متن کامل

Automated Edge Detection Using Convolutional Neural Network

The edge detection on the images is so important for image processing. It is used in a various fields of applications ranging from real-time video surveillance and traffic management to medical imaging applications. Currently, there is not a single edge detector that has both efficiency and reliability. Traditional differential filter-based algorithms have the advantage of theoretical strictnes...

متن کامل

STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM

Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app122010220